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The process of wiping a thickened chemical contaminant from
a surface, where it has been inadvertantly transferred and may
pose a safety hazard, is investigated with regard to the
fundamental fluid mechanics. Of special interest is the effect
viscoelastic fluid behavior has on the process and specifically
the amount of fluid remaining after wiping . Rigid aluminum
blades of variable geometry, accurately positioned above a smooth
rotating cylindrical surface, provide an experimental model of
the process, Residual fluid thickness data ag a function of
blade height for newtonian liquids are compared to a simple
lubrication theory model, while a more thotough Finite Element
golution to the problem is planned for the future. Preliminary
results indicate the potential to separate shear thinning and
elastic effects experimentally through the proper choice of test
fluids.




INTRODUCTION
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The process of wiping a contaminating fluid £from a surface

.Y

poses an interesting £luid dynamics problem and is of practical

interest as well. Although a wiping step alone is rarely

¥

sufficient to render a surface "clean", optimizing the wiping
process (minimizing the amount of contaminant remaining) can
considerably reduce the requirements of additional, more costly,
cleaning processes,

A simple geometry for investigating the wiping process is
shown in Figure 1. Hsu (1984) considers a similar geometry to
study the the forces generated in a blade coating process. His

analysis is the basis for a simple analytical model presented

here, with two modifications. First, his primary interest iz in
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&% the pressure field generated under the blade, while we are
5{ concerned with the amount of liquid left behind after the wiping %

process. Secondly, he considers only a specific case of our more

x

generalized geometry, leaving open the question of how sensitive
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the results are to blade orientation and placement, Following
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Hsu, a perturbation method is used to obtain an analytical
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solution for newtonian liquids, and justification is given for

X
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?i retaining only the zeroth order solution (equivalent to ﬁ
;4:,_ e
?i lubrication theory - Cameron, 1966). A specially designed wiping A
= apparatus is used to collect residual fluid thickness data, for i
. 7
X comparison. Data for newtonian liquids show good agreement ﬂ
?ﬁ with the model under some conditions, and provide insight into %
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the limitations of the model under others.

The model is extended to purely viscous non-newtonian
liquids, by incorporating a shear dependent viscosity function
into the egquations. Experiments with viscoelastic liguids
demonstrate that the residual fluid thickness can differ markedly
from values predicted by lubrication theory for purely viscous

fluids.,




ANALYTICAL SOLUTIONS
Newtonian Liquids:

Figure 2 gives a definition sketch for the geometry and
coordinates. We sgtart with the steady state Navier-Stokes
equations (neglecting gravity) in two dimensions, written in

carteslan coordinates as
Ay U\ _ U
(’( ax“'vay = /‘L;xx*/"‘ay (1)
(2)
dp b“_y
G( >-- '\'/L'L axm U 5\1'&
The continuity equation is

33 + A\CS =D (3)

We nondimensionalize the variables with a set of scaling

factors as follows:
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the specific system (the wiper) of interest, but specify that

\/:'_k-)-_\" ‘P:__/U____.l-{\:x
x h
We define a Reynolds number (Re) as
-t
Re: -(_J-b
ML
and a geometrical parameter of as
Skt
= (%)
Then Egqs. 1-3 become
R - VP e
e(CP > b§+0‘7 +o<'()!z. (4)
P PN\ __dT 2y NS (5)
(@R 5 Ry
3‘9 a_gi) <o (6)
YY),

It is useful to rewrite Eq. 6 as

6(“ ) (7)
o
‘-P %—J 3"%" d'? +
T(¥)
A!“ Boundary conditions for the wiper take the forms of the following
5




equations (see Fig. 2)

=0 amd Y20 on  7=28(¥) (8)
‘ = : 5_0' o = 0 (9)
F=9(5) and W: @ 5% 9= G(8)

T=0 on 3= F, (10
a0 ‘ om =% (11)

Utilizing the boundary conditions on Y we may replace Eq. 7

with an equivalent continuity expression of the form

18 9!
J & el'] = X {12)

o
It is not difficult to see that the constant 3\ defined above is
a dimensionless residual £luid thickness. The proportionality

depends upon the choice of the length scale W usged in defining

Also of interest is the separating force (per unit width

transverse to the flow), defined nondimensionally as

i i
5}5(‘3>(/u\8l_:>: {TT d3 (13)

The goal, then, is to solve Eqsd, 5, 12, and 13 for X and & as

functions of oK , Re , and the shape factors that enter into the
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description of the nip region through the specific forms of G(g)
and @(E) .

Sa far, the lubrication approximaticns have not been
imposed. Equations 8 and 9 express the no-slip assumption on the
kinematics. Boundary conditions on pressure have been the
subject of numerous discussions which will not be repeated here.

We select the simplest choice (the Swift-~Steiber conditions
- Dowson and Taylor, 1979), in Egq. 10 and 11, and we note that
the positions E\ and E; correspond to the ends of the blade (X1
and X2), By its absence from the boundary conditions we see that

surface tension effacts are assumed to be absent.

An analytical solution to Egs, 4-6 may be found by a
pPerturbation method.The perturbation parameters are &
(accounting for curvature effects) and Re (for inertial effects).

Each of the variables is expanded as follows:

qb <¢ ©0 p\!'© q, o\

W Y Y Y
™| = | + [ T +Rel ™ | + .. (14)
N N PN b
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Variables with superscript (00) give the zeroth-order lubrication
approximation. Those with (10) and (0l) give the first order

corrections for curvature and inertia, respectively.

Ihe Zeroth=Order (Lubricatiopn) Selution
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When Eqs., 14 are substituted into Egs. 4, 5, and 12, and

terms in <X and Re are dropped, we recover the lubrication

equations in the form

nga B‘l Y-
O=- -B-%— 4 'b—";;_l (15)
. o_dwm™” (16)
O = 3\7
‘A(“
J ¢eu AV . >\oe (17)
T (5)

Boundary conditions 8-11 hold, but do not include any
constraint on ky y which does not appear in this lewvel of

approximation,

The solutions may be written as follows:

# =Tl BRI (LY - gw)

2 (T-4) (18)
where
e s %;I _ TN s 6D (%)
E (7= (o- > (19)
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v (g-g)?3

3 NTeh
ey - J ERN \ X (21)

2 ; [(cr-@\’ " (o- -6

1%

3’ - J TURY &3 (22)

The results are general (to this level of approximation) and
can be made particular upon a choice of geometry, @(?\ and (7)),
and kinematic boundary condition 43(2).

Results presented by Hsu indicate that the pigher order
corrections may not be necessary for our purposes. First order
corrections for curvature contributed less that 0.5% to the
residual fluid thickness ( ).), in the specific case he examined,

and the zeroth-order solution was within 1% of a numerically

generated solution of the Navier-Stokes equations (Egs. 1 and 2).
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First order effects would, however, be important if our primary

3

concernwas for information on blade loading (@). Hsu's analysis

demonstrated that first order corrections contributed as much as

SR
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10% to the dimensionlesa blade loading. Without attempting to

s
P
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derive the higher order solutions, we examine the results

obtained from the zeroth-order approximation, without relying too
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heavily on the quantitative predictions of blade loading.

The particular choice of geometry and kinematic boundary
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condition, as shown in Figure 2, are

Roll Surface Uy = - 2 (23a)
S x R
Blade Surface G'(’Q = W= x tan () (24a)

where H = @:(0) = H - X0 Tan( W)
H, is the smallest separation (in the y-direction)
between the blade and roll.
¢’ ’ 7 ’
i.ec B, = min{ @ (x) - T (x)} = @& (X0)~ T (x0)
X0 = location of minimum blade separation

i.e. X0 = min{ X2, max{ X1, R sin( w )} 1}

X-Velocity b\\ =V =V (\-. 251:2;) (25a)
= 0
T(x)
Y-Velocity v\ S Vo.-.-_- U ( E) (26a)
T (%)

In dimensionless form,
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- g Tow (@) (24b)

ol v,

fl,j:

2(1)=
%(§3 =\~_{( %)’*Sz (25b)

Y (%) = - ( \;_7_:3 b (26b)

v

An cbvious choice for the length scales L, and h , is

L, =R

h=H
where H is the blade height at x=0, However, previous results
are presented with L, = (R .ﬁ)u"and for the purpose of comparison
is vsed here as well. The definition of ; requires a closer
look. In addition to ; , three parameters are required to
specify the geometry; the blade length, L, blade angle, W, and
the blade displacement,X2. Hsu considered the case of wa= (0 and

X2 = 0, for which

8(5)+

1| T

and
H=H,
where the obvious choice for h is H,. In this case, H
corresponds to the blade helght at the downstream edge of the

blade (X2) and the minimum separation between the roll and blade.




L) ‘, |:
- .
"'| - . 4
T‘.; ‘ When X2 = 0 an appropriate choice of reference length , h, is i
l-.. \
‘-" not obvious. Three possibilities are: o
<
. O 1) Separation between the blade and roll at the K
downstream edge of the blade. b
P - ,
i h =g (x2) - ¢ (x2) ]
15, 2) Separation at X = 0. *‘
i h=B .
. 3) Minimum separation between blade and roll
e ho=x 4
2 ’ - ’
;:j_':j For this study, the preferable reference length, h , is the ‘
L blade height at X = 0, for X2 ) 0, and at the downstream edge of ¥
- (M
B the blade for X2 < 0. The downstream edge is chosen when X2 ¢ 0 .
to avoid negative values of h , Otherwise, the choice of h = H, [
,‘ for X2 > 0, simplifies Eg. 24a nicely. The final expressions ’!
e o
‘. defining the geometry and kinematic boundary conditions are: ',
Uy h
%Y Wb -
]
For X2 2 0 : [
.- {0
o
G‘(\;} :~—‘.;_\57' (23¢)
o
&
) ’I.
(1) i
o Ton (w 3
i .)’ o - —— (240) 3
2_{ (5( ;3 ! . Yy E (8
'\"' !_
'u', |
b .
& by
™ (25¢) |
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$(s)=-7% (26c)

where
& = (H/R)
L, = (R EY"
h =g

For X2 < 0
Equations (23b), (24b),(25b), and (26b) with
L= (REY™

h=H-X2 Tan(w ) + X2
21
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L Figures 3 and 4 contain justification for considering the iﬁ
i zeroth order perturbation solution without higher order EE
; contributions for curvature. Hsu's results for ) as a function ﬁf%
: of H,/R indicate that first order corrections are small relative g%%
'ﬂ to the sensitivity of %\ to variations in blade angle and Eﬁ
displacement. In the geometry chosen by Hsu, for example, a two gﬁ

degree error in blade angle or 2 mm displacement of the 19 mm §§

TE blade, results in up to 10% change in X compared to less than tﬁg
} 0.5% for first order curvature effects., This is not to say that i
] first order effects are always insignificant. When blade loading %ﬁ
‘ is of primary interest, as it is for Hsu, they are important and bﬁ
should be included. This is shown in Figures 5 and 6 where -

. variations in blade loading associated with curvature effects are E%i
| comparable to variations due to changes in blade angle and Eﬁ
displacement. Rﬂ

' The results are very sensitive to blade angle as shown in %g
Figures 3 and 5. It is unlikely, in practice, that the blade 4
{ angle can be set to within one degree. It is interesting to note )
: that in the limit of zero blade height, the limiting value of X\ Sf
is 2/3, for a zero degree angle and becomes one for positive i%

blade angles, regardless of how small., Increasing the blade !m

angle increases the residual £fluid thickness and decreases the &%

blade loading for a given blade, EH
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Figures 4 and 6 show the effect of blade displacement. The
use of blade displacement as a parameter is somewhat artificial
because by re-defining the reference frame, displacements can be
accounted for by appropriate changes in blade angle. By defining
the y-axis as the radius that passes through the downstream edge
of the blade, the displacement can be eliminated as a parameter.
The reason displacement is considered in this analysis is for the
the benefit of providing a sensitivity analysis for an
experimental system with a fixed coordinate system, like that
used by Hsu and described later in this report. Notice the
asymmetry apparent in Figure 6. Displacing the blade upstream
(negative x-direction) causes a significant decrease in blade
loading, while positive displacements cause less of an effect in
the opposite direction. The blade loading has a maximum at
X2s=L/2 for a zero degree angle, corresponding to the geometry for
which the point of tangency of the blade is located at the center
of the blade. Positive displacements cause the blade loading to
increase until X2=L/2, after which further positive displacement
will decrease the blade loading.

Figures 7 and 8 show the effect of blade length on )\ and &.
The range of blade length over which the lubrication theory
results are meaningful is limited by two major assumptions.
Lubrication theory requires that entrance and exit effects are
negligible, L/H>>1, and that the blade and roll be nearly
parallel to minimize curvature effects, L/R<<1l. When the blade
is large, relative to the roll radius, it extends so far that the
curvature of the roll is significant and the parallel flow

assumption is violated, At the other extreme, solutions for
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small blades are only valid for very small blade heights, because
as the blade height increases, the entrance length also increases

and entrance effects become significant.

- - o e—gs -t
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Non-Newtonian Liquids:

Many of the liquids of interest are polymeric solutions or
melts which exhibit non-newtonian behavior, We anticipate that
the response of such solutions to the wiping process is
complicated by non-linear elastic and viscous effects, which can
be extremely difficult to model. As a first step in
understanding these phenomena, we turn to an analysis of the role
of non~linear viscous effects by incorporating a simple shear

dependent viscosity function into the analysis.

We begin with the steady two-dimensional dynamic equations F
in the form

@

r -‘24 :—.l’t," —i :
2R T e T
o

s W WYL w A 2Ty (26)
- -— N . = - - —
: P(“ 3 T3 S« ¥ ax T By

i

A

1

. AV AV
(\,\_. PN L _dP |, 3Txy | DTy (27)
SN 3233 5y Yo T 59
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along with the continuity equation

W vy
% T =0 (28)

(e

A useful model for shear viscosity is the power law, a

purely viscous (i.e. non-elastic) constitutive egqguation that we

write as

s 29
LMl (29

where the rator of deformation tensor has two-dimensional

cartesian components

Y W, Dy
* d oy * ox
D = (30)
~ U N YV AV
Y % 2 55

The viscosity function 1s written as

/(’UK(?‘HZQ (31)

where
‘T A
- au U v v \*
E&-[zox§4z( CRE) )+ (2 a~1> (32)

As in the newtonian case, the variables are
nondimensionalized and the dynamic equations display terms to
zero and first order in % and Re. The variables are then

written as in Eq. 14, and the solutions to various ordersin

17




and Re may be obtained.
The nondimensionalization is identical to that used in the
newtonian case, except that the newtonian viscosity conutant

of those equations is everywhere replaced by a factor
U\ |
M =\ ( qﬂ (33)

We refer to M as the apparent vigcosity at the (nominal) shear
rate U/H,.

In dimensionless form, Eq. 31 becomes

Ao Ll (T

and J itself is included in the perturbation expansion in the

form
JEo AT i s Re B 9

As Iin the newtonian case, we concern ourselves only with the
zeroth order solution, but for different reasons, Although the
power law constitutive eqguation is a useful mathematical model
for investigating the effect of a shear dependent viscosity, it
is not expected to model quantitatively the behavior of any
"real” fluid involved in the wiping process. An immense amount
of algebra is required to generate the first order contributions,
and it is more reasonable to extract information from the zeroth
order solution and compare that to the behavior of some real

£luids,
The Zeroth Order Solution:

18



The equations are (Cf: Egs. 15-17)

e 3 LA ()]

- H Feal i e}

e , S e T -
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Ay s e . L
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Lt T

o

37
o - (37)

Z
v
~3

3
)
\
!
by
b

(38)

where
/‘:"—ooa 5(h%°o>l] = -

Boundary conditions 8-11 hold.

Unfortunately, no analytical solution of these equations may
be found. Instead, we adopt a procedure due to Horowitz and
Steidler (1960) and produce numerical solutions for the variables
of interest.

One advantage of the Horowitz/Steidler procedure is that it

can be generalized to any purely viscous constitutive equation.

We rewrite Eq. 36 as

O - - D\Tw b_'_C_‘% (40)
ST

'fy; 19




where

°°- —o0 5¢°°
Tosu 5'{7‘ (41)

but )1' is8 left unspecified at this stage. We define a
function F (T as

flT™) = 35%. (42)

(in the following, we drop all superscriptsthat denote the

zeroth-order solution.)

Integration of Eq. 40 yields

T=1T +Tp (43)
where < - 'C\
¢ N 1(¥)
Integration of Eq. 42 using Eq. 9 gives
7
CP:I 1Y 41 + ¢ (%) (44)
T(¥)
Using Eq. 43, we write this as
T
= L (45)
¢ ﬁj £ dT 4 ¢ (%)

.CO‘

With the boundary condition ¢ = 0 at 7 ={5(§\ we may write this

e e e ¢ e i e o e . ot oS e e i e &




as
T

: ‘i-:,—(_;) Lleyat = [T—['C Y- Tﬂ “‘;) (46)

T
c

. g |

where we define
<

FlT) = J.r(ﬂ dt

(47) ‘

With these results we may write X\ in the form

=J(Z» W = ;.\,ST’[F(r\-FLrM At +jtpcfi 4_5

v T, Ty

>

= o | GT)- 6T - (T T3F(Tcﬂ+——(T‘C
T ( G ‘@ \ (48)
where

~ T
Gy J:t Y dt -
S 0
Gji From Eq. 43 we write
gt . T~ T
o ‘-7
&&; If we regard T, » T+ X, and T as the unknowns, we may
ﬁiﬂ use BEqs., 46, 48, and 50 in an iterative approach as follows:
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1) A constitutive equation is selected, so that_ﬂt)is
iﬁ given as an explicit function. Hence the integrals
o F and G may be obtained.

2) A trial value for A is asgsumed.

3) Regarding Th r G oo and T as the unknowng at each
position § , we assume a § value, calculate 0(}),
Q(r) , and d% and solve for Z; ’ T; , and T at each
§ on the range § < § <{ .

4) From T and the boundary condition W= 0 at § =¥,
we integrate to obtain the function TT(F). If T(¥,)
does not satisfy the boundary condition TT= 0 at
E - Et , we change X\ and carry ocut another cal-
culation of W(¥), until satisfactory convergence

is attained.

This method is checked by carrying out the procedure for a

gres 2

-
e . A-.Lr

newtonian £luid, for which an analytical solution for TI(}) and

- w-w-~w-

N lsavailable(throughthe zeroth-order newtonian analysis

presented earllier). Satisfactory vresults are obtained, as shown
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For a power law fluid, for which

S .y

£l = lT) T (51)

(52)

Gley = =~ TFlT)

9+ (53)
one obtains the results shown in Figures 10-17 (See Table 2 for

)
Key to Figures 10-17). é. is calculated as before (i.e.using
BEq. 13), but for a power law fluid

)( M\?R) (54)

sim

5

with M, the apparent viscosity, calculated from Eq. 33. We note
that U/B, is an arbitrary but useful definition of a
characteristic shear rate in this geometry.

Figures 10-12 and 14-16 show that the residual fluid

thickness increases as the liquid becomes increasingly shear

thinning (i.e. as n decreases) and is relatively unaffected by




small changes in blade angle or displacement. The increase is
small and shows a slight dependence on H/R.

Figures 13 and 17 show the effect of shear thinning on blade
loading with blade angle and displacement as parameters,
respectively. Blade height is predicted to have a significant

effect, but small changes in angle and displacement do not.
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EXPERIMENTAL

Apparatus:

Figure 18 shows a sketch of the wiping apparatus. A
cylindrical steel roll is half immersed in the test fluid and
driven at constant speed, U, Liquid is entrained by the moving
roll and is partially wiped by the blade, while the remaindet
emerges downstream as residual fluid of thickness, h. The blade
is held in a rig which permits accurate positioning of the blade
relative to the roll.

The roll has a radius of 2.75 inches, accurately machined to
within 0,5 mil, and an axial length of 5 inches. Blades made
from aluminum are interchangeable and have the geometry defined
in Figure 19, Table 2 summarizes the sgpecific geometries
discugssed in this report.

Residual fluid thickness is measured by a direct contact
method (Greener, 1978) wusing a micrometer driven needle
positioned 60 degrees downstream of the blade. The contact of

the needle with the surface is observed through a microscope.

Procedure:

It is unfortunate that in the limit of very small blade
height (H -»0), when the lubrication approximations are most
likely to be valid, good experimental data are very difficult to

obtain. Because of unavoidable experimental uncertainty and the
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W
E: ;
5 finite precision with which the roll is machined, there is always o
2? some error associated with measuring both the blade height, H, ;
;& and residual fluid thickness, h. The small but finite ;
j; uncertainties amount to large relative errors in residual fluid é
ﬁ thickness as H— 0. If the blade height and the corresponding :
'fk residual fluid thickness are accurately known at one setting, 3
:ﬁl however, precise incremental changes can be made. A procedure h
.g* for gathering and presenting data is adopted, which minimizes the i
£ experimental uncertainty by taking advantage of the precision ;
ﬁé{ involved in measuring increments in H_, and h. ;
ﬁé Blade height is arbitrarily set to a large value (greater %
:ﬂ than 50 mil) and the corresponding residual fluid thickness is ;
-;3 measured. The blade height is then incrementally decreased, with L
i;? the associated micrometer reading for residual £luid thickness %
F& recorded for each increment, until the blade touches the roll )
if (corresponding to H = 0). The roll is then stopped and the hh
'ﬁ needle is lowered until it too touches the roll, and the g
2n micrometer reading is recorded (corresponding to h = 0). The data ;r
e generate a curve of h as a function of H . This curve as a whole L
% can then be shifted, within bounds set by the experimental k
1: uncertainty (a maximum of 1 mil in any direction), so that it 3
§§ passes smoothly through the origin., In this way, the errors E'
Es involved in individual data points are averaged out over the b
.& entire curve.
3 ;
& ;
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RESULIS

The range over which certain experimental variables are
considered is determined by experimental limitations. 1In order
to £lood the inlet (upstream) region of the blade, a sufficient
quantity of fluld must be entrained from the reservoir as shown
in Figure 2a. The amount entrained depends upon both the roll
speed and the fluid properties (Campanella, 1984)., For a given
fluid, the roll speed is limited on the low end by this flooding
criterion. ©On the high end, there is also a limit, corresponding
to the onset of instabilities and/or air entrainment ., Under
unstable wiping conditions, the residual fluid layer is no longer
smooth and often develops a "ribbed" pattern (Pearson, 1960,
Sullivan, 1979) transverse to the direction of £flow. Positive
blade placements and negative blade angles are found to promote
this instability. When stability is not a problem, there is a
limit on roll speed above which air is entrained into the test
fluid at the interface where the roll surface re-enters the bath
(Burley, 1984). The range of roll speeds investigated is from 2
to 20 in/sec, depending on the test fluid. To obtain flooding of
the blade, a lower limit on the viscosity of newtonian test
fluids is about 3 poise.

Two newtonian liquids are examined: glycerine and Karo
syrup. Under conditions that the blade inlet is flooded, no
effect of linear roll speed on residual fluid thickness is

observed. Figure 20 shows data for glycerine and Karo syrup with

a 1/4 in. blade at 0 degrees and the c¢orresponding results




predicted by lubrication theory. Results for glycerine and Karo
syrup are identical (within experimental uncertainty) even though
their viscosities differ by almost an order of magnitude. 1In
other geometries, similar agreement between the two is found.
The remainder of the newtonian results presented are for
glycerine, with the assumption that they are representative of
newtonian liquids in general.

In Figure 20, agreement between the data and lubrication
theory is good for small blade heights , but becomes poor as H,
increases, while in Figure 21, the data and theory are in good
agreement up to the maximum blade height shown (50 mils). The |
poor agreement with small blades at large blade heights is due to
entrance effects not accounted for by lubrication theory. When H,
= 50 mils, L/HO- 10 for the 1/2 in. blade, but only 5 for the 1/4
in. blade. Data indicate that L/H > 10 is a reasonable estimate
of the requirement that entrance effects are negligible., Notice
that when entrance effects are significant, data lie above the
theory as expected on the basis of momentum tranafer arguments
(Appendix A). Blades larger than 1/2 in. are not used for two
reasona. With the 1/2 in. blade and 2,75 in, radius roll, L/R =
0.18. Larger blades would likely invalidate the negligible

rEﬂ curvature assumption, L/R << 1, and at the same time require a
#gi large amount of fluid to flood the inlet region of the blade.
Eﬂg This flooding problem (see Figure 2a), limits the blade geometry
;ﬁ? in a number of cases.

;?ﬁ Changing the blade angle from zero to 10 degrees affects the
;il residual £luid thickness as shown In Pigures 22, 23, and 24, for

three blade lengths. Surprisingly good agreement between




- experimental data and simple lubrication theory is found for the
{@‘ 1/2 in. blade. Note that as the blade size decreases, the data
'1%? fall further above lubrication theory predictions due to entrance
éﬁé effects. Blade angles larger than 10 degrees are not discussed

| because of large curvature effects and the problem of flooding
Eﬁ the inlet region of the blade. Some experiments performed with
;3? large blade angles (e.g. 45 degrees) produced data that fell
below lubrication theory predictions, but it is unknown whether

';ﬁ- this effect was due to curvature or an inadequately flooded inlet
; region,

'f;% Figures 25 and 26 show the effect of blade displacement and

fkg are also good examples of the above mentioned flooding problem.

Once again, data for the largest blade (L=1/2 in) are in good
i agreement with theory, but only for three of the four

ﬁf% displacements shown., The data for the largest negative
AE§_ displacement (X2=-0.5) fall below the theory. This is a prime
f'Y: example of not enough fluid being entrained by the roll to flood
' ‘\} the inlet region of the blade. The problem is exacerbated when
‘;ﬁé the blade angle is increased, as shown in Figure 26.
B
,éﬁf Non-Newtonian Liquids:
.H“
_éi Predicting the behavior of viscoelastic liquids is difficult
555 in even the simplest flow problems and is complicated further by
iﬁ; the converging-diverging nature of the wiping process. We do not
E expect good quantitative agreement between the simple power law
% , 29
.
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lubrication theory model and residual fluid thickness data for

real viscoelastic fluids, but rather hope to gain insight into

R P Y

the effect the shear dependent viscogity has on the results.
Figure 27 shows viscometric data, taken with a Rheometrics
Fluids Rheometer, for a shear thinning carboxymethylcellulose
(CMC) solution. For a linear roll speed of 10 in/sec and blade
heights ranging from 10 to 50 mils, the nominal shear rate ranges
from 200 to 1000 1/sec. In this range the power law index, n, is
about 0.6. Note, however, that the fluid also exhibits a finite

normal stress. At a representative shear rate of 500 l/sec, the

recoverable shear, sﬁ‘, defined by

L Py e A e TR E K L T e e T T e T

v Vi S
2% S = T (55) l
o 2 Tia,
'ﬁ.){l
i where T.-T
Nx = .

t'l.

and .

v:-; ANYS r-q.\-?.

is also about 0.6. The recoverable shear is a parameter commonly

used to estimate the relative importance of elastic and viscous

effects. When we examine data for the CMC solution, we observe

Eﬁ the results of both shear thinning and elastic effects, while the

hi power law lubrication theory only accounts for the shear thinning
Ef behavior.
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Figure 28 shows that the residual fluid thickness of the CMC
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solution is considerably greater than that for glycerine and is
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also greater than predicted by lubrication theory. Since shear
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thinning behavior is accounted for in the model, it is reasonable
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to suspect that the increase in thickness is due to elastic
“ effects. To test this hypothesis, small amounts of high
molecular weight polyacrylamide (PAM) are added to the CMC -

solution, to increase the recoverable shear without significantly
affecting the power law index. Data for two such sclutions are
included in Figure 28, one with a recoverable shear of 0.9 and
the other with 1.4, Note that by increasing the recoverable
shear, the residual fluid thickness decreases rather than
increascs. The data for the solution with the largest recoverable
shear fall below those of the newtonian fluid. This is opposite
to the effect predicted by the power law lubrication theory
model.

In an attempt to isolate elastic and shear thinning effects,

the behavior of an elastic fluid with insignificant shear

T T e e T T TR T o L A G AT LS T L AT T T Y. N . R B ST W A ST S S EEO W = T

thinning (i.e., a Boger fluid - Boger, 1977) is examined. The
fluid is made by adding a small amount of high molecular weight

[ p—

PAM to corn syrup. Figures 29 and 30 show viscometric data for
the Boger fluid as well as for a CMC solution and glycerine.
Note that the viscosity of the Boger fluld is nearly constant
over the shear rate range for which data were collected. The
Boger Fluid also exhibits large norma)l stresses in steady shear

relative to the highly shear thinning (n=0.6) CMC solution.

Figure 31 shows a drastic decrease in residual fluid

S _Su_jead

thickness with the Boger fluid relative to glycerine. Note that

-

although the CMC data fall above the power law lubrication theory

s

curve, it is in better agreement for the larger 1/2 in. blade

} &t g

than for either the 1/4 in. blade (Figure 32) or the 0.068 in.
blade (Figure 33)., This is attributed to entrance effects, which
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for flow in pipes are known to be considerably ~nger for
viscoelastic fluids than those encountered with newtonian fluids
(Tung, 1978). Results in Figures 31-33 demonstrate that the
elastic solution exhibits a greatly decreased residual fluid
thickness in comparison to lubrication theory models. The amount
of viscoelastic fluid left behind after the wiping process
appears to depend on the competing effects of shear thinning,

causing it to increase, and elasticity, causing it to decrease.
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CONCLUSIONS

Experimental results for newtonian liquids ate very useful
for determining the range of validity of the lubrication theory
model, but unfortunately, that range is severely limited. One
obvious inadequacy of the model is the negligible curvature
agsumption, which is only valid for very small wiper angles,
Another is the assumption of negligible entrance effects, which
appears to be vioclated for thin wipers. The model also fails to
take into account surface tension effects by using the Swift-
Steiber boundary conditions. A useful estimate of the magnitude

of surface tension effects is the dimensionless capillary number
defined by

= /éiﬁg 56
r\)CO\ G* (36)

The fact that %2 is of order unity in some of our experiments
a

indicates that surface tension may be significant., Gravitational

effects are neglected in the model as well, and can be estimated

by another dimensionless group, the Stokes parameter, defined by
H‘L
St s (:_J_._.O
MU

If the blade height is large and the roll speed is low, St can

be as large as 0.2, but in mnst of our experiments gravitational

effects are negligible. (Note: Centrifugal effects are always




negligible). Obviously, a less restrictive model of the wiping
process is required, but since an analytical solution is very
unlikely, it is necessary to consider the use of numerical
techniques.

We are presently attempting to use the Finite Element Method
(FEM) to solve the blade wiping problem for newtonian fluids
without the simplifying assumptions mentioned above., Surface
tension, which i8 neglected by the use of the Swift-Steiber
boundary conditions in the lubrication theory mecdel, can be
accounted for by treating the region downstream of the blade as
a free surface problem. The effects of gravity, inertia, and
curvature are relatively easy to incorporate into the numerical
scheme as well, so that the rigid blade wiping problem can be
completely solved for newtonian liguids.

Even with sophisticated numerical techniques, it is unlikely

that the wiping problem can be solved in general for viscoelastic

liquids. With newtonian liquids, the formulation of the problem

W,

is straightforward because of the simple and predictable manner

in which they respond to imposed deformations, Viscoelastic

e
e
"t .
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!
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\

- liguids, on the other hand, exhibit extremely complex behavior

»
»
"

o which is dependent on both the magnitude and duration of

.

0

. )
v

deformation imposed. Unlike the newtonian case, a constitutive
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equation does not exist that 1s capable of describing visco-

Lo,

elastic fluid behavior in a general flow fleld. Nonlinear

A
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g viscous behavior alone, is relatively easy to model, the power

law fluid being a simple example. The difficulties arise because

TR
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-

the viscous effects are coupled with transient and deformation

history dependent behavior assocliated with the "elasticity" of 3
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the fluid. Today, flow problems are solved using constitutive
equations chosen according to a compromise between algabraic
tractability and physical reality. Such equations are highly
dependent on the nature of the flow field and are limited to
special classes of problems. The wiping problem is a formidible
problem for a constitutive equation to model because £luid
particles experience rapidly changing deformations in time, which
can be of considerable importance for viscoelastic fluids

(Shirodkar, 1982), Elastic liquids can exhibit large transient

A TS T BT S e L e A I LT L AW B W,

shear stresses as well as extenslional stresses when undergoing
the rapid changes in deformation rate that are present because of

the converging nature of the flow., The reulting kinematics for

viscoelastic liquids are often drastically different from those
present for newtonian liquids (Doremus, 1983, Mensah, 1984,
Metzner, (1969). |

Key to solving the problem of modeling viscoelastic fluid
behavior is determing which material properties are most
responsible for the behavior of a given £luid in a particular
flow field., We have mentioned the recoverable shear, which 1is a
steady viscometric material property providing a measure of the
relative importance of elastic and viscous effects in steady
shear flow. An important question is, can material properties
neasured in steady viscometric flows provide insight into how an
elastic liquid will behave in a transient £low field? If not,
what are the pertinent transient fluid properties to measure and

how can they be incorporated into useable and realistic

constitutive eqguations?
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Given the difficulty involved in choosing an appropriate
constitutive equation to model the wiping process, it is
fortunate that we are able to use experimental data to evaluate
proposed constitutive equations. Finding a constitutive equation
to best fit the data is equivalent to determining which material
properties of the £luid dominate the flow field. As a simple
example, if the power-law model had fit the data nicely, we would
conclude that the shear thinning nature of the fluid is most
responsible for the resulting behavior. In fact, such is the case
for the CMC solution with the lowest recoverable shear. There is
an increase in A\ over newtonian values as predicted by the model,
although a little more dramatic than expected. However, as the
elagticity of the fluid is increased by the addition of poly-
acrylamide, as reflected in an increased recoverable shear, the
trend in A is reversed. The shear dependent viscosity is
obscured by another fluid property associated with the elasticity
of the £fluid. The data provide experimental evidence of this
fact, and is a good test for evaluating constitutive equations to
be used to model the process. In this way we can obtain a better
understanding of the important features of the wiping process.

This study provides a good foundation for understanding the
rigid blade wiping process, but equally important, it provides
gsome insight into a direction for future work, A Finite Element
solution to the newtonian problem is required to understand the
effects of inertia and surface tension and explore thin wipers
and large wiper angle geometries, With the newtonian problem
well understood, experimental data for well characterized visco-

elastic fluids can be compared to newtonian results and provide
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information regarding more quantitative aspects of non-newtonian
and elastic effects. An obvious extension of the rigid blade
wiping problem is to the study of wiping with flexible blades.
This problem is much more complicated than the rigid wiper case
because the geometry is unknown a-priori and depends upon the
complex interaction of hydrodynamic forces and wiper properties
(saita, 1984), Fortunately, the solution to the rigid wiper
problem provides the logical first step in understanding the
influence of geometry on the hydrodynamic forces that develop

under a wiper and is a valuable tool for further study.
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VARIABLES

]

F/W = force per unit width on blade

h - residual fluid thickness

E - characteristic length in the y-direction

H - blade height at x=0

H, = minimum clearance between the blade and the rell
K -~ parameter in power-law fluid model

L - blade length

L, =~ entrance length (Appendix A)

L, = characteristic length in x-direction

n - power-law index

Nl - primary normal stress coefficient (page 30)

P - pressure

- flow rate

TR T TR

L 5

R - roll radius
Re = Reynolds number (page 5)

u - linear roll speed

-
»

=2

u - velocity in x-direction

X

u}x) - u-~velocity on roll surface

v - velocity in y-direction

v(x) - v~velocity on roll surface

=
]

space coordinate in the primary flow direction

Ol S

i."

X9 - x~-coordinate at the point of minimum blade clearance

6 X1 - x~-coordinate at the upstream edge of the blade

o

i X2 - x-coordinate at the downstream edge of blade

\

3 Yy - gpace coordinate transverse to primary flow direction
i

N 38
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Variables: (page 2)

& - geometric parameter (page 5)
@'(x) - function describing the blade surface (linear)
(3 () - dimensionless blade surface
§ (x) - boundary layer thickness (Appendix A)
- rate of deformation tensor

- dimensionless space coordinate - y/ﬁ (page 4)

4
7
A - dimensionless residual fluid thickness - h/h (page 6)
M - viscosity
¥ - dimensionless space coordinate - x/L, (page 4)
T - dimensionless pressure (page 4)

ng - second invariant of é

(»’ - density
T (x) - function describing the roll surface (quadratic)
O (¢) - dimensionless roll surface

o - surface tension

E - stress tensor

'C;j - 1,3 component of the stress tensor

¢ - dimensionless u-velocity (page 4)

‘é(‘\ - dimensionless u(x) (page 11)

= dimensionless blade loading (page 13)

S . dimensionless v-velocity (page 4)
L}:(“ = dimensionless \z(x) (page 11)
w

- blade angle
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T
. Angla (dag) %
! or ::
» Symbiol Ho/R Displacemant (mm) ]
.~.|
; O 0. 006 0
iy
o
i ® 0. 015 0
[)
)
: ] 0. 025 0
,)\I
3 A 0. 006 .1
* A 0. 015 * 1
A 0. 025 + 1
3
8 O 0.006 ~ 1
; ] 0. 015 -1
% 0 0. 025 -1
)
3 | |
\' TABLE 1: Kay to Figuras 10-17
. '
N
»
. Blade Length (L) Bladae Angle (W) ,
K Q.5 in. Q0 deg.
4 10 dag.
: 0.25 in. 0 dag.
" 10 dag.
L)
- 0. 068 in. 0 dag.
o 10 dag. ;:‘
ﬂ TABLE 2: Blada Geomatries
{ - 40
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Effact of Blade Angla

Luwl§ mm !
R=51 mm
0. 88  X2=0 mm

1 \\\\\ . |

N
0. 687
4
0. 847 1 dag
1 o
0. 827 0 deg
1
4 I ///,/’“'—-
X
A 0.8 ‘
0.0 0. 02 0. 03
H/R
FIGURE 31 Effact of blade angle on Rasidual
Fluid Thicknese (A ). Solid lines
are Lubrication Thaory for o Nawtonian
liquid. Symbols are from Hsu (1984)
© - Zaroth order solution !
® - First ordar curvaturae included ’
A - Finite Element Solution ‘
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o FIGURE 41 Effact of blada displocement on Rasidual
o Fluid Thicknass ( A ). Solid lines
o ore Luprication Thaory for a Naewtonian
L 2 liquid. Symbole are from Hsu (1984).

Q - Zaroth order solution
@® - First order curvature inecludad
A - Finita Elament Solution
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Tast of Pawar-Low Algorithm

O = New+tonian

A= Power Low (nrl)
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N FIGURE 8b: Comparisocn of the Rasidual Fluid
' Thicknass obtained with tha numerical
' Powaer—law Lubricotion Thaeory algorithm
e (n=]) to the analytical Naewtonian
' Lubrication Thaory solution.
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FIGURE 11: Effact of power—law indax on Rasiducl
Fluid Thickness with blade angle us o
paramater. ( Kay in Tabla 1)
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FIGURE 14: Effact of Power-law index om Rasidual
Fluid Thickrness with blada displacamant
as a paramatar. ( Kay in Tabla 1 )
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FIGURE 20: Rasiduol Fluid Thickness vs. Blada Haight
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Effact of Blade Langth

R=2.73 in
X2=0
0 deg angla

30 -

. A L=0.50 {n
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h (171000 in
n
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Selid linas = Lubrication Thaory

Data for Glycerine
o - L=0. 50 in
® = L=0.25 in
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FIGURE 21: Newtonian data and Lubrication Theaory
showing the affact of blade langth.
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FIGURE 23: Nawtonion data and Lubrication Thaory
showing tha affect of blade angle
using o 1/4 in. blada.
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FIGURE 25: Nawtonian data and Lubrication Thaory
showing tha effact of blada displacamant
using o 1/2 in. blade at 0 degraas.
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FIGURE 29: Viecosity vs. Shear Rate for Bogar
\ Fluid (x), 2% CMC (o), and Glycarina (#).
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FIGURE 32: Data for Nawtonian and Viscoelustic
liquids comparaed to Newtonmian and

Power-law Lubrication Thaory.
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ARPENDIX A

MOMENTUM TRANSFER ARGUMENTS FOR AN INCREASE IN RESIDUAL FLUID
THICKNESS WITH DECREASING BLADE LENGTH.

For the purpose of simplifying the present discussion, we
consider the simplified geometry with zero curvature (R=ew ) and
zero wiper blade angle shown in Figure A-1. Similar arguments
apply to more complicated geometries.

Fluid entrained by the moving roll in our experimental
apparatus approaches the wiper at a conatant speed, equal to the
roll speed, However, because of the no-slip condition at solid
surfaces, the velocity of £luid making contact with the leading
edge of the wiper becomes zero, which initiates the formation of
a boundary layer as shown in Figure A-2, The thickness of the
boundary layer , Jd(x), is the distance over which viscous shear
stresses, originating at the wiper surface, tranafer momentum
between the wiper and the £luid. Fluild outside of the boundary
layer remains unaffected by the presence of the wiper. The
boundary layer grows along the wiper, downsteam of the leading
edge, and if the wiper is long enough, eventually £fills the
region between the wiper and the moving surface. For two
paralle; surfaces , one moving and the other stationary, the
velocity profile is linear when it becomes "fully developed", and
the distance required for this to occur is called the "entrance

length (Lg)". Simple lubrication theory assumes that the
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entrance length is 2zero and therefore, cannot account for
"entrance effects", should they occur due to the developing
boundary layer. For large wipers, when L/Le >> 1, entrance
effects are negligible, but as the wiper length decreases, the
entrance region can become a significant fraction of the wiper
length., We would like to have some estimate of how small awiper
must be in order for entrance effects to be significant and how
these effects can influence the residual fluid thickness.

In an attempt to investigate entrance effects we consider
the simple geometry shown in Figue A-l1, From boundary layer
theory (Bird, 1960 - pg.145) we know that the thickness of a

boundary layer developing on the wiper can be approximated by

—————y

fg(x\ =4, Y J \2\5;-(' (A-1)

with the velocity distribution

1
w . z2(Y __\< Y

o0¢Y ¢ §x)
Assuming, that outside of the boundary layer fluid moves with the
same velocity as the moving surface (u=U), the flow rate, Q,
between the wiper and the moving surface can be written
{(x) He
. U}}(g -3 Y 4
Q = 2\ i 2\ f(x) “1 + @) A\j (A=3)

°e d(x)

where &(x) < H., If the boundary layer thickness in the above
[}

expression is evaluated at the downstream edge of the wiper (i.e,
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x=L), then the residual fluid thickness is given by

. Q
W= 3 (A=4)

Using the following dimensionless variables and substituting

7 = i x- E\ RQ - UHO

J(L\ Ho ¥
Equations A-l and A-4 into A-3, we obtain an expression for the
residual £luid thickness, which is only valid as long as the

boundary layer does not extend to the moving surface (i.e.

$(L) ¢ H).

vy
s\ é 5.\%'_-3 =\- £ lu 6\{)( %Z\ (A=5)

The assumption that J(L) & H constrains the blade length to

. HoRe

(apu)® (A=6)

The actual wiper lengths for which entrance effects are
significant is actually larger than this, because once the
boundary layer reaches the moving surface, there is an additional
transition region along which the velocity transforms into its
fully developed linear profile,

Figure A-3 shows the effect of blade length, at a given

Reynolds number, on the residual fluid thickness as predicted by
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Equation A-S5, According to the boundary layer arguments, the
residual fluid thickness increases as the blade length decreases, i
when entrance effects are significant. The dotted line is an ‘ ‘
extension of Equation A-5 into the transition region of blade
length, where boundary layer arguments are certainly invalid.
Although we can not easily estimate the length of the transition
region, it is obvious that simple momentum transfer aréuments
suggest that the residual fluid thickness increases when entrance

effects are significant.
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